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A Generalized Equivalent Circuit Applied
to a Tunable Sapphire-Loaded

Superconducting Cavity
Michael E. Tobar, Student Member, IEEE, and David G. Blair

Abstract —A Lagrangian technique is used to develop an

equivalent circuit for a loop-coupled tunable sapphire-loaded

superconducting cavity resonator (T-SLOSC) by considering

separately the sapphire dielectric and the cavity. Interaction
between modes during tuning is characterized by cross coupling
components between equivalent mode circuits. Cross-coupling
coeftlcients are defined with respect to the fields in the res-
onator and equivalent circuit components. Coupling between
modal fields is shown to be predominantly reactive in the

sapphire-loaded cavity, and can degrade a mode with Q >108

by a few orders of magnitude. Interactions between line reso-
nances and T-SLOSC modes are observed to be predominantly
resistive through the superconducting niobium probes. Cross-

coupling coefficients between some interacting modes have been

determined and the reflection coefficients modeled.

I. INTRODUCTION

T HE tunable sapphire-loaded superconducting cavity

resonator (T-SLOSC) under investigation is being

developed as a dielectric resonator in an ultra-low-phase-

noise, tunable, cryogenic, X-band loop oscillator. Its use

is in a parametric transducer system for a resonant bar

gravitational wave antenna at the University of Western

Australia [1]. Similar devices could be used for any appli-

cation requiring low-phase-noise X-band signal sources.

Fixed-frequency [2], [3] and tunable [4] sapphire res-

onators have been described previously. These resonators

exploit the low loss tangent of sapphire at cryogenic

temperatures, with achievable Q values greater than 109.

However, the permittivity of sapphire is only about 10, so

to obtain confinement of about 9590 in the sapphire part

of the loaded cavity, a high circumferential mode number

is required, The two modes analysed in this paper have
been identified to have circumferential mode numbers of

6 and 8 [5]. Thus the cavity is overmoded, and when

tuning the desired operational mode, other modes can

tune near and interact with this operational mode.
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Fig. 1. Scale diagram of the construction of the T-SLOSC, where the
internal dimension of the nobium cavity is 50x 50 mm.

Construction is illustrated in Fig. 1. The resonant sap-

phire cylindrical mushroom height by diameter dimension

is 27.5 x30.1 mm, while the sapphire tuning disk is 3 x 30.1

mm. Both are inside a 50x 50 mm cylindrical niobium

cavity. The sapphire tuning disk affects the evanescent

field outside the sapphire and perturbs the resonant fre-

quency. Tuning is achieved by the tuning stepper motor;

typically a tuning range of the order of tens of MHz is

achieved for a mode with an unloaded Q of a few

hundred million. Three niobium probes couple to and

extract electromagnetic energy within the cavity. The

probe stepper motors vary the coupling to particular

modes.

For high-Q modes only approximately half a percent

tuning of eigenfrequencies is experienced. Therefore

eigenfunction field patterns experience only small field

perturbations. One might thus expect the quality factor to
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remain high throughout the tuning range. This is desir-

able in that the phase noise obtainable from the con-

structed loop oscillator is dependent on this high quality

factor. Experimental results reveal that while tuning,

modes interact. If a high-Q mode interacts with a low-Q

mode, the high-Q mode will experience a severe drop

in Q.

Complete field solutions of coupled cavities are very

difficult. However a cavity coupling system may be re-

placed by impedance or admittance elements of known

magnitude and frequency dependence. For a right

cylindrical resonator an equivalent circuit based on a

Lagrangian technique [6] has been used to derive equiva-

lent circuit parameters from known field patterns and

cavity properties. In a fixed right cylinder there are no

interactions between modes; i.e., the associated eigen-

function field patterns are orthogonal. In this case cross

couplings between modes are nonexistent. Previous work

[7] has shown that a mutual resistive interaction was

apparent in a tunable echo box between degenerate

modes. This also occurs in the T-SLOSC when modes

interact with line resonances. However, for modal interac-

tions a mutual reactive effect dominates as a consequence

of the reactive sapphire dielectric. This type of effect has

been observed previously between two similar sapphire

disk resonators [8].

All internal elements add possibilities for mutual inter-

actions. We have generalized previous theory [61, [71, [91

to include all possible mutual interacting terms. This

keeps Lagrange’s equations and the equivalent circuit

representation as general as possible, These interacting

modes have been modeled on Mathematical [10]. Results

show the Q degradation observed for reactive coupling

between modes. Resistive interaction modeling reveals

that a higher Q mode distorts as it tunes across the

bandwidth of a lower Q mode. In our experiments this

effect was apparent across line resonances.

This paper describes high-precision measurements of

mode interactions made possible by the use of an ultra-

stable sapphire-loaded superconducting cavity (SLOSC)

oscillator within a theoretical framework for understand-

ing the observed behavior. A general expression for the

reflection coefficient of two interacting modes is derived.

Taking a very precise look at some reactively and resis-

tively coupled interactions experimentally verifies the

generalized reflection coefficient derived.

II. EQUIVALENT CIRCUIT—THEORETICAL

DEVELOPMENT

Separating the sapphire dielectric and niobium cavity

parts, the loop-coupled Lagrangian equations for a given
mode n will be presented. Either q. (electric charge) or

~. (magnetic flux) are chosen as normal coordinates,

corresponding to a resonant wavenumber k.. Duality

exists between these electric and magnetic quantities, and

it is assumed that the electromagnetic field in the cavity

and sapphire can be expanded in terms of the normal

coordinates ~., ~. or q., q. respectively, with eigenvalues

kn and dimensionless vector eigenfunctions ~., q.. Thus,

in the cavity or

in the sapphire.

The dimensionless vector eigenfunctions obey the wave

equations:

V2& + k;& = O v“&=o (3al)

V“lln=o (’3b)

and relevant boundary conditions on the sapphire dielec-

tric or superconducting cavity walls. If no coupling be-

tween modes occurs, the following orthogonality condi-

tions hold true:

J en” em Lit = 8nmLld (4al)
dielectric volume

( ‘Tin” ~m dt = %rrtvd (4b)
dielectric volume

J ~n. & dt = 8nmVc (5a)
cavity volume

/ wt”~mdt = %rzLIc- (5b)
cavity volume

Here ld and rJC are the dielectric and cavity volume

respectively anc[ t$.n is the Kroneker delta. Also ij. and

q. are related by

Using the electric current coordinates q. and 4., a

series circuit naturally evolves from the theory. Modeling

the cavity, the series loss represents the surface resistance

losses of the nic~bium superconductor. Using the magnetic

flux coordinates ~. and ~., a parallel circuit naturally

evolves from the theory. Modeling the sapphire, the dissi-

pative term represents a shunt dielectric loss. The series

circuit can be transformed to a parallel circuit for a

general mode with Q>> 1 [6], and vice versa. This dual

representation can be taken further when regarding inter-

actions between modes by introducing cross-coupling

terms. When attempting to isolate these parameters to

either superconducting niobium or sapphire dielectric,

both representations are needed to understand meaning-

ful equivalent circuit parameters in terms of the modal

fields.
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Fig. 2. General equivalent circuit of two excited modes in a loop-cou-

pled cavity as derived from normal coordinates qn and qm.

A. Series Circuit Representation of the Niobium Cavity

In this subsection we shall derive the series equivalent

circuit of Fig. 2 with respect to the electric charge coordi-

nates q. and q~. Assuming only two excited modes, n

and m, and using (la) and (lb), the magnetic and electric

field energies in the cavity can be represented by the

respective Lagrangian variables:

T~~=;~ Hn. Hm dr
cavity volume

wk.kmi.in
—

2 / q.-wnd7 (7)
cavity

Vn. =&/ Dn. Dm dr
cavity volume

k;kr?zqnqm
——

2E J cmntyvolum~n”gmdt” ‘8)

Here p and e are, respectively, the permeability and

permittivity within the cavity. In general they are func-

tions of position internal to the cavity.

In the case where n = m, these field energies have the

form of inductive or capacitive stored energies:

(9b)

where L. is the equivalent series inductance and S. the

equivalent series elastance. Combining (9) with the

relation between wavenumber and

(k. = o-J.&), it can be shown that

r

Sn
(i),L= —.

L.

resonant frequency

(lo)

In the case where n # m, cross-coupling terms are de-

fined:

These are

L = pkflkn
! %-%dr (ha)

cavity volume

:“= “k’
nm

nm
/— cavity wlumfn”gm d’” ‘llb)E

energy storage terms which couple energy

between two given modes and in general may include

surface reactance effects of the niobium.

Series losses in the superconducting niobium surfaces

are represented by the dissipation function F [11], given

by

F = ; ~,ObiUm ,Ur~aCeR,lH1’ ds. (12)

Here R. is defined as the surface resistance, which in

general is a function of temperature according to the BCS

theory [12] -[14]. Combining (12) and (l),

(13)

where

R nm = k,,k~~=j” q.. qnds. (14)
niobium surface

For a normal conductor the relation

been generalized [6] to

R~
nm =

Q nm

where

~mr

R=wLQ-l has

(15)

-
Q 21) I ~n”wds. (16)

nm conductor surface

Here 8 is the penetration depth for the normal conduc-

tor. We regard an analogous effective penetration depth

for the superconductor. If n = m, (16) defines the quality

factor associated with niobium losses for an individual

mode. However when n # m (16) defines a quality factor

arising from the two modes interacting or aligning in the

niobium surface. This mutual dissipative term describes

an energy coupling path between the two modes.

Using T.n – V.~ as the Lagrangian, the generalized

coupled Lagrange equations [11] with respect to q. and

q- become

where en and @m are the emf’s induced in the normal

mode meshes by currents in the coupling loop. Assuming

the loop to be small enough that the current distribution

along the loop is uniform, then, for a loop current of iO,

@E= LO.: and @,~= LO,m$ (18)

where LO,, is the mutual inductance between the loop and
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normal mode mesh n. Defining the mesh currents i~=q~

and i~= cj~ and taking the Fourier transform of (17), one

obtains

[1

L On
jwIo ~

On

“[1I.

I“m

The equivalent circuit relating to (19) is illustrated in

Fig. 2, where Lo is the loop inductance, Zl~ the input

impedance, and Z. the characteristic line impedance. A

standard transformer coupling coefficient arising from the

probe coupling to the cavity may then be defined:

.n=i& (20)

It is also possible to define the following cross-coupling

coefficients:

1) Magnetic Field Cross Coupling:

“=&
/ v.” I-Irrr dl

cavity volume
——

,1/2~,

(Jcavity volume’in’ ‘n ‘t’ J cavity volumevm” ‘m ‘t 1

–l<AL<l. (21a)

2) Electric Field Cross Coupling:

‘c=&

–l<AC <l. (21b)

3) Dissipative Cross Coupling:

R nrn m

f ~n”~rnds .
niobium surface—

(/ )

1/2 ~

niobium ,urface~n” nrz ds”
J

niObium surfaceqm”’~’s

–l<A~<l. (21c)
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Fig. 3. General equivalent circuit of two excited modes in a loop-cou-
pled dielectric resonator as derived from normal coordinates C#Jn

and ~m.

These coupling coefficients are normalized mutual pa-

rameters, which are invariant, regardless of equivalent

circuit representation. Thus when we write the equivalent

circuit impedance in terms of normalized parameters, we

shall write the mutual component in terms of these cou-

pling coefficients.

B. Parallel Circuit Representation of the Sapphire Dielectric

Applying th(~ formalism of subsection A, we shall derive

the shunt equivalent circuit of Fig. 3 with respect to the

magnetic flux coordinates r$~ and @n. Using (2a) and

(2b), the electric and magnetic field energies of two

excited mode:s, n and m, can be represented by the

respective Lagrangian variables:

kki%in
Vn,n=

2p /
q..q,~d~. (23)

dielectric volume

These again have the form of energy storage elements as

an inductor and a capacitor. In the case where n = m,

Cn = ek;
/ dielectricvolumJgn12d7

(24a)

r.= : ~ielectric “Olumlll.lz dr (24b)

where 17Zis the equivalent parallel reciprocal inductance

and C. is the equivalent parallel capacitance. It follows

from (24) and k,, = w.@:

rqtin= —.
Cn

(25)
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In the case where n #m, cross-coupling terms are de-

fined:

Cn,~ = ek~k~
I

~~e~~ dr (26a)
dielectric volume

k;k;
rnm’ —

P / diel..tric.olum>n”qm ‘r (26b)

Shunt losses in the cavity dielectric are represented by

the dissipation function G, given by

G = : ~ielectric,o,ume(TdlE12dt- (27)

where ad is the dielectric conductivity. The paramagnetic

loss associated with chromium impurities has been shown

to be negligible [2] and has been omitted. Substituting

(2b) into (27) yield

where

(28)

Jmizca——
Q

(29)
n m

and

1 VEE

Q=V~ /
~n~nl d~. (30)

nm dielectric volume

Here e; /6 = CTdn/ew~ is the nth mode loss tangent, or

ratio of imaginary to real permittivity, in the sapphire

dielectric.

Using T~~ – Vnn as the Lagrangian, and defining ~~

and ~n as the mmf induced in the normal mode meshes

by currents in the coupling loop, the generalized coupled

Lagrange eql Miens with respect to +. a

[:. % [ll+[:.::1[::1
[ 1[rn rnm ~n

+
r rm ~mnm

tances from the loop inductance, the overall leakage

inductance referred to the m-imarv can be written as

LO(l – K; – K;). Expressing (31) in terms of node voltages

V. = ~m and ~,1 = ~,~, (31) Fourier transforms to

[–1No

l-l
Nn

I
0 No

N.

“[1Vn
Vm“

(32)

This describes the circuit illustrated in Fig. 3 after adding

the series leakage inductance.

The parallel cross coupling coefficients are evaluated as

follows:

1) Magnetic Field Cross Coupling:

“=&

(/ciiekctricvokufln”qn ‘T”Lie,.ctr,.vo,”m~’n”qm ‘r )

–l<AL <l. (33a)

2) Electric Field Cross Coupling:

‘“k
J ~n.~mdt

d]electrlc volume——

(J
)dielectricvol”m5n”gn ~f”Lelectr,c”o,”m}m’gm~’ “2 ‘

–l<AC <l. (33b)

[1.Aa%.. (31)

Conservation of mmf in each mesh implies that

The effective turns ratio, No /Nn, is calculated from the

ratio of the primary and secondary magnetizing induc-

bIICtX, K~~o and rn– 1, respectively, and is given by

No /Nn = ~m. Subtracting the magnetizing induc-

3) Dissipative Cross Coupling:

a“=&=Q..

J ~n~mdt
d]electrlc volume——

(/
)d,electr,cvolum~n”gn ~T”L,e,ectr,cvo,”m~tn”gmdT “2 ‘

–l<A~<l. (33c)

These cross-coupling coefficients are invariant when

referred to the primary or seconda~ coils of the ideal
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Fig. 4. Both Fig. 2 and Fig. 3 can be represented as a series combina-
tion of parallel LCR circuits with a defined coupling coefficient between
like elements.

transformers in Fig. 3. The mutual capacitance and recip-

rocal inductance are not invariant. This fact highlights

why the former are useful when considering a normalized

impedance of the cavity for theoretical purposes.

C. Significance to the Overall T-SLOSC Equivalent Circuit

Deriving the input impedances of Fig. 2 and Fig. 3 gives

the same input impedance (Fig. 4), illustrating the duality

of the circuits. However the parameters relating to the

series circuit involve the niobium superconductor, while

the parallel circuit involves the sapphire dielectric. A

general circuit as shown in Fig. 4 is considered, where

each parameter may have more than one contribution

arising from the sapphire and niobium parts internal to

the cavity.

The four individual mode circuit elements may be ex-

pressed in terms of the four cavity-coupling parameters,

Q., Lo,%> K.:

lb= LO(l– K; – K;) (34a)

1;= K2L
nO (34C)

(34d)

LO and Kn depend on the probe properties and its place-

ment in the cavity. If the transformer coupling is zero,

then the probe does not couple to any modes, and the

input impedance is equal to the loop reactance. As the

transformer coupling increases, the series reactance di-

minishes and coupling to the mode increases. Probe step-

per motors that work cryogenically are used to adjust

penetration into the cavity to vary the coupling. Both the

niobium and the sapphire contribute to Q. by Q; 1 =

Q&rn + Q%z [15], [2]. For high-Q modes On is domi-

1:18 I

nated by the sapphire dielectric [2], [3] while the niobium

cavity perturbs it only very slightly.

For modeling purposes it is’ convenient to express f he

input impedance of the circuit in Fig. 4 in terms of the

normalized parameters ~. = r; /2., a = lhti~ /2., Yn =

(O – 0.)/ 0., and Q. and the Cross-cowling coefficie~lts
from either (21.) or (33). Thus it can be shown that

where

is a Lorentzianl of unity coupling and

%t= A~+j~m(&((y. +l)(Ym +1))’”

– AL((Y. + 1)( Ym+ 1))-’”2)

is a mutual cIross term arising from the derived cross-

coupling coefficients. The reflection coefficient is defined

by

I%AZ + I%Al – WzzAAn%il

+( ja +1)(1– A.AnB~~)

By expressing both mode frequencies in terms of a tuning

parameter ancl graphing the reflection coefficient at vmi-

ous tunings, ‘the behavior of closely tuned modes can be

investigated. Mathematical allows the algebra to be han-

dled with ease.

III. OBSERVATIONS OF COUPLED MODES

The model clescribing coupled mode behavior was tested

using the apparatus shown schematically in Fig. 5. The

sapphire resonator has two unperturbed high-Q modes at

10.439 and 10.22 GHz; both occur in doublet pairs. Exper-

imental tuning curves for one of each pair of doublets are

shown in Fig. 6. The tuning variable x is measured in
millimeters from the top of the sapphire resonator to the

tuning disk. A. decrease in the observed Q of each mode

occurs when a low-Q mode is tuned close to the high.-Q

mode under investigation.

Q degradation for the 10.439 GHz modes was observed

for x between 7 and 8 mm. The effect was seen on three
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Fig. 5. An ultrastable swept microwave frequency source is obtained

by mixing a fixed-frequency SLOSC oscillator with an HP 8662A synthe-
sizer locked to a frequency standard. The resultant signal is then swept
slowly over the T-SLOSC in reflection, at 100 s per frequency span. The
voltage V&~ is measured from the detector in the range where it is
proportional to Ipl 2. From this plot, Q and coupling can be measured.
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Fig. 6. Mode frequency and unloaded Q curwes versus tuning for one
of each of the 10.22 GHz and 10.439 GHz high-Q doublet pairs.
Unloaded Q curves are directly beneath the corresponding frequency
curves.

experimental runs and has never been observed for the

10.22 GHz mode. Since the field patterns are not known

in detail, one can only postulate why this occurs. Either

the niobium tuning stem links a significant fraction of the

field, creating additional dissipation, or there is a reactive

coupling to some distant mode. This would require larger

coupling coefficients than those presently measured (see

next section).

9
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,rJ ‘L_—.———
789101112

tuning x (mm)

Fig. 6. (Continued)
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Fig. 7, The interaction of a low-Q doublet pair with the 10.439 GHz doublet pair, (a) Frequency versus tuning curves

during the interaction. (b) Unloaded Q variations of each mode during the interaction. (Continued on next page.)

Fig. 6(b) (10.439 GHz) was plotted using a room-tem- the T-SLOSC. After the addition of the cryogenic circula-

perature circulator rather than the cryogenic circular tor, the interaction around x = 10.2 mm was observed

shown in Fig. 5. The 1.5 m of coaxial cable leading out of with greater accuracy, shown in Fig. 7.

the cryogenic Dewar greatly enhanced line resonances.

Section V shows that line resonances affect cavity reso-

nances through a resistive interaction between the probes.
IV. REACTIVE COUPLING -

To measure cavity properties, a line resonance can be For reactive coupling (ignoring damping), the method

detuned away from cavity resonances by varying a line of Goldstein [11] calculates the resonant frequencies from

stretcher between the room-temperature circulator and det(V.~ – o.i2T.J = O. Using circuit elements of Fig. 5,
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we obtain

det

or

10

a

10

10
99 101 103 105 107

tuning x (mm)

Fig. 7. (b)

=0 (37)

+(l– AL)@&=O.

It is assumed that the interacting modes have linear

tuning coefficients, so an = O.(l + A x’/2) and

mm = COO(l– A x’/2), where Ax’ is an arbitrary dimension-

less tuning unit. The solution to first order in Ax’ and

AL – Ac is

[

i Ax’z +(AL – Ac)z
~,>2=mlJ 1+

2
1

(38)

This shows that the two modes always have a minimum

frequency separation when Ax’ = O, owing to the reactive

coupling between the two modes.
Experimentally, it is possible to measure the net reac-

tive coupling by

Equations (21) and (33) allow couplings of either sign.

Negative inductive coupling has the same effect as posi-

tive capacitive coupling; thus it is impossible to determine

experimentally whether the coupling is through the mag-

netic or the electric field. However, the reactive coupling

can be measured and substituted into Mathematical for

simulation. The interaction is not symmetrical, so the

n ‘“’r

,o’L—————
97 99 101 103 105 107

tuning x (mm)

(Continued)

coupling coefficient sign can be determined by comparing

the simulation with experiment.

A general interaction of two doublet pairs requires four

mode equivalent circuits, with cross-coupling elements

between each mode circuit. For the higher frequency

interaction illustrated in Figs. 7 and 8, the dominant

coupling occurs between mode A and mode C. Mode D is

too far away in frequency, while mode B only couples very

weakly in this interaction. This is highlighted by Q~

dropping an order of magnitude less than Q~ and mode

B’s tuning curve deviating only slightly, while mode A and

mode C swap characteristics. Thus the model derived for

two interacting modes should be applicable.

The linear tuning curve for modes A and C in the

vicinity of the interaction are measured and found to be

(from Fig. 7)

fA=.fo[l.028110 -’Ax+l]

~c=~o[5.427610-3Ax +1]. (40)

The frequency of intersection between the two lines in

(40) is given by .fO = 10.43900 GHz, and Ax is given by
Ax = x – XO, where XO= 10.5107 mm. High precision in

relative values of x is achieved by a stepper motor,

although the systematic error in the absolute value is

much greater owing to the possibility of thermal differen-

tial movement during cooling.

Before the interaction the foIlowing parameters were

measured (assuming a = O): Q~ = 108, Qc = 4.105, @~ =

2, and /3== 0.7. Using (41) the mutual coupling is esti-

mated from the experimental curve in Fig. 8(b) to be;

AT = – 1.0.10 ‘5. This is an overestimate since x # Xo.

After a few trials AT= – 8.5.10-b gives a reasonable

agreement with experiment. Experimental and theoretical

curves are compared in Fig. 8.
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Fig. 8. The higher frequency interaction from Fig. 7 with the experi-
mentally observed interaction compared with a theoretical simulation.
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Fig. 8. (Continued)

The lower frequency interaction in Fig. 7 is more com-

plicated, asmodes B and Cinteract simultaneously wil,h

mode D to about the same order of magnitude. The

mutual couplin~g is estimated from (39) to give A~=

– 2“ 10-6. This smaller coupling enables the high-Q modes

to get closer to the bandwidth of the low-Q mode. For the

10.22 GHz mode interactions, cross-coupling coefficients

are of the order of – 5010-5.

The mechanism of this reactive coupling is either via

the electric field, as one might expect in a dielectric

resonator, or via the magnetic field through a chromium

electron spin resonance. This chromium resonance has

been observed to cause a power-dependent coupling be-

tween modes in a fixed-frequency SLOSC [16], which

causes frequency pulling of one mode when power is

injected into another. It is possible that this coupling is

another manifestation of this effect.

V. RESISTIVE COUPLING

Resistive couplings were observed between line reso-

nances and most cavity resonances before the cryogeulic

circulator was added to the circuit in Fig. 5. The line

resonances had Q factors of about 5.5”102 with varying

couplings. After adding the cryogenic circulator, the ef-

fects of line resonances were negligible, owing to tlhe
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reduction of the line length and the number of connectors

from the probe to the circulator.

The circuit in Fig, 5 cannot span the bandwidth of a

line resonance because of the wavemeter in the circuit.

Thus the circuit in Fig. 9 was used to observe a line

resonance interact with a mode of Q = 10s and /3= 3.5.

An overcoupled mode is observed because from (36) it is

apparent that mutual effects will be enhanced for an

overcoupled mode. The frequency stability of the mi-

crowave sweeper allowed the study only of low-Q modes

with this circuit; however the same effects on high-Q

modes were observed using the circuit of Fig. 5 with a

room-temperature circulator. The line stretcher in Fig. 9

was used to frequency pull a line resonance across the

T-SLOSC mode under investigation. Fig. 10 shows a

comparison between experiment and theory.

Line resonances couple to cavity r~sonances through a

niobium loop probe. From (21c),

/ niobium probeun’ ‘m ‘s
AR=

/ \ 1/2 “

[/ niobium probe’ln” ‘n’s J %n”%ds
niobium probe J

The value AR = 0.9 was found to give good agreement

between the model and experiment (Fig. 10). The cavity

resonance distorts as it tunes across the line resonance.

VI, CONCLUSION

Interactions betyeen various modes in a tunable sap-

phire-loaded superconducting cavity have been studied.

The main features that emerge are as follows:

1)

2)

3)

4)

Reactive coupling causes modes to influence each

other beyond their bandwidths, because in (38) the

reactive factor in B~~ is multiplied by the geometric

mean of Q. and Q~.

Reactively coupled modes do not tune across each

other; they become hybrids of each other and even-

tually change identities. The reactive cross coupling

can be calculated by the closest point of tuning

between the two modes.

Resistively coupled modes influence each other only

if one can be tuned in the bandwidth of another.

To measure the T-SLOSC mode properties among a

line resonance, the line resonance must be tuned

away by a line stretcher, so that the line resonance

does not affect the cavity resonance through a mu-

tual resistance in the probe.
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sources, with applications in radar, space tracking, radio

astronomy, and other areas of high-precision metrology.
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This paper has successfully modeled some of the com-

plex phenomena that occur in a tunable multimode cavity.

In spite of the complex interactions, Q factors greater

than 108 can be achieved, with a useful tuning range of

the order of tens of MHz. This technology provides a

means of creating ultra-low-phase-noise microwave tional detector system.
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