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A Generalized Equivalent Circuit Applied
to a Tunable Sapphire-Loaded
Superconducting Cavity

Michael E. Tobar, Student Member, IEEE, and David G. Blair

Abstract —A Lagrangian technique is used to develop an
equivalent circuit for a loop-coupled tunable sapphire-loaded
superconducting cavity resonator (T-SLOSC) by considering
separately the sapphire dielectric and the cavity. Interaction
between modes during tuning is characterized by cross coupling
components between equivalent mode circuits. Cross-coupling
coefficients are defined with respect to the fields in the res-
onator and equivalent circuit components. Coupling between
modal fields is shown to be predominantly reactive in the
sapphire-loaded cavity, and can degrade a mode with Q > 10%
by a few orders of magnitude. Interactions between line reso-
nances and T-SLOSC modes are observed to be predominantly
resistive through the superconducting niobium probes. Cross-
coupling coefficients between some interacting modes have been
determined and the reflection coefficients modeled.

I. INTRODUCTION

HE tunable sapphire-loaded superconducting cavity
resonator (T-SLOSC) under investigation is being
developed as a dielectric resonator in an ultra-low-phase-
noise, tunable, cryogenic, X-band loop oscillator. Its use
IS in a parametric transducer system for a resonant bar
gravitational wave antenna at the University of Western
Australia [1]. Similar devices could be used for any appli-
cation requiring low-phase-noise X-band signal sources.
Fixed-frequency [2], [3] and tunable [4] sapphire res-
onators have been described previously. These resonators
exploit the low loss tangent of sapphire at cryogenic
temperatures, with achievable Q values greater than 10°.
However, the permittivity of sapphire is only about 10, so
to obtain confinement of about 95% in the sapphire part
of the loaded cavity, a high circumferential mode number
is required. The two modes analysed in this paper have
been identified to have circumferential mode numbers of
6 and 8 [5]. Thus the cavity is overmoded, and when
tuning the desired operational mode, other modes can
tune near and interact with this operational mode.
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Fig. 1. Scale diagram of the construction of the T-SLOSC, where the

internal dimension of the nobium cavity is 50 X 50 mm.

Construction is illustrated in Fig. 1. The resonant sap-
phire cylindrical mushroom height by diameter dimension
is 27.5 % 30.1 mm, while the sapphire tuning disk is 3 X 30.1
mm. Both are inside a 50 x50 mm cylindrical niobium
cavity. The sapphire tuning disk affects the evanescent
field outside the sapphire and perturbs the resonant fre-
quency. Tuning is achieved by the tuning stepper motor;
typically a tuning range of the order of tens of MHz is
achieved for a mode with an unloaded Q of a few
hundred million. Three niobium probes couple to and
extract electromagnetic energy within the cavity. The
probe stepper motors vary the coupling to particular
modes.

For high-Q modes only approximately half a percent
tuning of eigenfrequencies is experienced. Therefore
eigenfunction field patterns experience only small field
perturbations. One might thus expect the quality factor to
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remain high throughout the tuning range. This is desir-
able in that the phase noise obtainable from the con-
structed loop oscillator is dependent on this high quality
factor. Experimental results reveal that while tuning,
modes interact. If a high-Q mode interacts with a low-Q
mode, the high-Q mode will experience a severe drop
in Q.

Complete field solutions of coupled cavities are very
difficult. However a cavity coupling system may be re-
placed by impedance or admittance elements of known
magnitude and frequency dependence. For a right
cylindrical resonator an equivalent circuit based on a
Lagrangian technique [6] has been used to derive equiva-
lent circuit parameters from known field patterns and
cavity properties. In a fixed right cylinder there are no
interactions between modes; i.e., the associated eigen-
function field patterns are orthogonal. In this case cross
couplings between modes are nonexistent. Previous work
[7] has shown that a mutual resistive interaction was
apparent in a tunable echo box between degenerate
modes. This also occurs in the T-SLOSC when modes
interact with line resonances. However, for modal interac-
tions a mutual reactive effect dominates as a consequence
of the reactive sapphire dielectric. This type of effect has
been observed previously between two similar sapphire
disk resonators [8].

All internal elements add possibilities for mutual inter-
actions. We have generalized previous theory [6], [7], [9]
to include all possible mutual interacting terms. This
keeps Lagrange’s equations and the equivalent circuit
representation as general as possible. These interacting
modes have been modeled on Mathematica [10]. Results
show the Q degradation observed for reactive coupling
between modes. Resistive interaction modeling reveals
that a higher Q mode distorts as it tunes across the
bandwidth of a lower Q mode. In our experiments this
effect was apparent across line resonances.

This paper describes high-precision measurements of
mode interactions made possible by the use of an ultra-
stable sapphire-loaded superconducting cavity (SLOSC)
oscillator within a theoretical framework for understand-
ing the observed behavior. A general expression for the
reflection coefficient of two interacting modes is derived.
Taking a very precise look at some reactively and resis-
tively coupled interactions experimentally verifies the
generalized reflection coefficient derived.

1I. EourvALENT CIRCUIT— THEORETICAL
DEVELOPMENT

Separating the sapphire dielectric and niobium cavity
parts, the loop-coupled Lagrangian equations for a given
mode n will be presented. Either g, (electric charge) or
¢, (magnetic flux) are chosen as normal coordinates,
corresponding to a resonant wavenumber k,. Duality
exists between these electric and magnetic quantities, and
it is assumed that the electromagnetic field in the cavity
and sapphire can be expanded in terms of the normal
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coordinates ¢,,, <[>n or g,,4, respectively, with eigenvalues
k, and dimensionless vector eigenfunctions §,.m,. Thus,

H=)Yk,gm, (1a)
D=} kuq,&, (1b)
in the cavity or
B=)Y kZpm, (2a)
n
E = an(f;ilgﬂ (Zb)

in the sapphire.
The dimensionless vector eigenfunctions obey the wave

equations:
vV, +kE,=0

Vi, =0 (%)

Vo, +kv,=0 Viq,=0 (3b)
and relevant boundary conditions on the sapphire dielec-
tric or superconducting cavity walls. If no coupling be-
tween modes occurs, the following orthogonality condi-

tions hold true:

f gn gm dt = 5nmvd (431)
dielectric volume

f N Mo dt = 8nmud (4b)
dielectric volume

/ £, &, d = 0,0, (5a)
cavity volume

'/ T‘n. Tlm dt = Snmvc' (Sb)

cavity volume

Here v, and v, are the dielectric and cavity volume
respectively and §,,, is the Kroneker delta. Also €, and
m,, are related by

kngnzvxnn —.kn“nzvxgn‘ (6)

Using the electric current coordinates ¢, and 4, a
series circuit naturally evolves from the theory. Modeling
the cavity, the series loss represents the surface resistance
losses of the niobium superconductor. Using the magnetic
flux coordinates ¢, and ¢, a parallel circuit naturally
evolves from the theory. Modeling the sapphire, the dissi-
pative term represents a shunt dielectric loss. The series
circuit can be transformed to a parallel circuit for a
general mode with Q> 1 [6], and vice versa. This dual
representation can be taken further when regarding inter-
actions between modes by introducing cross-coupling
terms. When attempting to isolate these parameters to
either superconducting niobium or sapphire dielectric,
both representations are needed to understand meaning-
ful equivalent circuit parameters in terms of the modal
fields.



1584

Zm =>

Fig. 2. General equivalent circuit of two excited modes in a loop-cou-
pled cavity as derived from normal coordinates g, and g,,,.

A. Series Circuit Representation of the Niobium Cauvity

In this subsection we shall derive the series equivalent
circuit of Fig. 2 with respect to the electric charge coordi-
nates g, and g,,. Assuming only two excited modes, n
and m, and using (1a) and (1b), the magnetic and electric
field energies in the cavity can be represented by the
respective Lagrangian variables:

1!
T~

o H -H, dr
2 cavity volume
= #‘/‘ N, My dr

cavity

(7)

1
Vn= 32 )

cavity volume

DD, dr

k ckla,4,, f

e £,&,dt.

(8)

cavity volume

Here p and e are, respectively, the permeability and
permittivity within the cavity. In general they are func-
tions of position internal to the cavity.

In the case where n = m, these field energies have the
form of inductive or capacitive stored energies:

L,=pk2f

cavity volume

(9a)

In,|* dr

n

£, dr (9b)

€ Jcavity volume

where L, is the equivalent series inductance and S, the
equivalent series elastance. Combining (9) with the
relation between wavenumber and resonant frequency
(k, = o,\/ew), it can be shown that

S
(10)
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In the case where n # m, cross-coupling terms are de-
fined:

—/*Lknkm[ L] LI P9 dT (113)
cavity volume
k2k2
Sum=——" £ Endr. (11b)
€ cavity volume

These are energy storage terms which couple energy
between two given modes and in general may include
surface reactance effects of the niobium.

Series losses in the superconducting niobium surfaces
are represented by the dissipation function F [11], given
by

1 2
F=— R |HI ds. (12)
2 nrobium surface

Here R, is defined as the surface resistance, which in
general is a function of temperature according to the BCS
theory [12]-[14]. Combining (12) and (1),

1
an = Eqnqunrn (13)
where
m = kilkm Rsrlem / ’rln. nm ds’ (14)

niobium surface

For a normal conductor the relation R=wLQ~' has

been generalized [6] to
yw,0,L, L,

R =—5— (15)
where
1 6,5, | p 16)
—_— . S.
Q am 20 conductor surfacenn R (

Here 6 is the penetration depth for the normal conduc-
tor. We regard an analogous effective penetration depth
for the superconductor. If n=m, (16) defines the quality
factor associated with niobium losses for an individual
mode. However when n # m (16) defines a quality factor
arising from the two modes interacting or aligning in the
niobium surface. This mutual dissipative term describes
an energy coupling path between the two modes.

Using 7,,,—V,,, as the Lagrangian, the generalized

n

coupled Lagrange equations [11] with respect to g, and
q,, become
Ln an (.in + Rn an q.n
+ S}'l S"WZ qn . ®n 17
where 0, and ©,, are the emf’s induced in the normal
mode meshes by currents in the coupling loop. Assuming
the loop to be small enough that the current distribution

along the loop is uniform, then, for a loop current of i,
di,
®,=L,,— and O

=7  —
dt m Om di (18)

where L, is the mutual inductance between the loop and
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normal mode mesh #n. Defining the mesh currents i, = ¢,
and i,, = g, and taking the Fourier transform of (17), one
obtains

. LOn
Jjol, I
On

Sn
ijn + Rn + —
Jw Jw

S
ijnm + an + .—'n_’n-

In
. . 19
H (1)
The equivalent circuit relating to (19) is illustrated in
Fig. 2, where L, is the loop inductance, Z,, the input
impedance, and Z, the characteristic line impedance. A

standard transformer coupling coefficient arising from the
probe coupling to the cavity may then be defined:

. LOn
T YLL,

It is also possible to define the following cross-coupling
coefficients:
1) Magnetic Field Cross Coupling:

an

v Lan

(20)

L:

/ N, N, A
cavity volume
= 1,2
(f Ny dee | N My I
cavity volume cavity volume
—1<A,<1. (2la)
2) Electric Field Cross Coupling:
A =17
< VS8,
/ £, B dT
cavity volume
= 1727
( / £, &, dr [ £ € dr
cavity volume cavity volume
—1<Ac<1. (21b)
3) Dissipative Cross Coupling:
R, V@rLQnm
Ag=——2— =
Ran Qnm
f M, M, ds
_ niobium surface
- 1/2°
(f n,m,ds [ N, N,y 45
niobium surface niobium surface
—1<Ag<l. (2lc)
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Fig. 3. General equivalent circuit of two excited modes in a loop-cou-
pled dielectric resonator as derived from normal coordinates ¢,
and ¢,,.

These coupling coefficients are normalized mutual pa-
rameters, which are invariant, regardless of equivalent
circuit representation. Thus when we write the equivalent
circuit impedance in terms of normalized parameters, we
shall write the mutual component in terms of these cou-
pling coefficients.

B. Parallel Circuit Representation of the Sapphire Dielectric

Applying the formalism of subsection A, we shall derive
the shunt equivalent -circuit of Fig. 3 with respect to the
magnetic flux coordinates ¢, and ¢,,. Using (2a) and
(2b), the electric and magnetic field energies of two
excited modes, » and m, can be represented by the
respective Lagrangian variables:

ek, kb, b,
= —————’; o £, &, dr  (22)
dielectric volume
k2,
nm = = f nn' nm dT' (2’3)
2/~L dielectric volume

" These again have the form of energy storage elements as

an inductor and a capacitor. In the case where n = m,

C,=ek? &,|° dr (24a)
dielectric volume
k 4
==/ i, 1> dr (24b)
M 7 dielectric volume

where T, is the equivalent parallel reciprocal inductance
and C, is the equivalent parallel capacitance. It follows
from (24) and k, = w,/eu :

— (25)
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In the case where n # m, cross-coupling terms are de-
fined:

C,.=€k,k, £,¢,dr (26a)
dielectric volume
k2k2
T, =— ’"f n, M, dr.  (26b)
124 dielectric volume

Shunt losses in the cavity dielectric are represented by
the dissipation function G, given by

1

G o, |E* dr (27)

B 2 dielectric volume
where o, is the dielectric conductivity. The paramagnetic
loss associated with chromium impurities has been shown
to be negligible [2} and has been omitted. Substituting
(2b) into (27) yield

where

Y, m knkm\/o-dno-dm /
drelectric volume
V@rWy, Cn Cm

— L mnrm 29
Qnm ( )

§,&,dr

and

gnhgnl dT' (30)

)
Q nm Uy dielectric volume

Here €, /e =0, /ew, is the nth mode loss tangent, or
ratio of imagina'{ry to real permittivity, in the sapphire
dielectric.

Using 7, —V,,, as the Lagrangian, and defining 2,
and Z, asthe mmf induced in the normal mode meshes
by currents in the coupling loop, the generalized coupled

Lagrange equations with respect to ¢, and ¢,, become

Cn C}'l m (5}1 + Yn Y}’l m d;n

Iﬂn an d)n . ZL

Conservation of mmf in each mesh implies that

NO NO .
Fn/rf N—mﬁﬁlo-

The effective turns ratio, N, /N, is calculated from the
ratio of the primary and secondary magnetizing induc-
tances, KﬁLO and I!, respectively, and is given by

Ny /N, =y«2L,l,. Subtracting the magnetizing induc-
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tances from the loop inductance, the overall leakage
inductance referred to the primary can be written as
L(1—«2—«2). Expressing (31) in terms of node voltages
V,=¢,and V,, = ¢, (31) Fourier transforms to

Ny
N,
1, N,
N,
Fﬂ nm
joC,+Y, +— joC,, +Y,  +—
Jo Jw

Fn
ijm + Ym + —

rnm
joC,,, +Y, + _—jw o

1)

This describes the circuit illustrated in Fig. 3 after adding
the series leakage inductance.

The parallel cross coupling coefficients are evaluated as
follows:

1) Magnetic Field Cross Coupling:

T,

nm

[

n-m

(32)

A=

f N, M, d7

dielectric volume

1/2°
My My dT'f Mo Ny df)

dielectric volume

-1<A;<1. (33a)

f

dielectric volume

2) Electric Field Cross Coupling:

/ & &, dl
_ dielectric volume
= : 1/2°
(/, . £ gt [ gm-gmdt)
dielectric volume dielectric volume
—1<A <1, (33b)
3) Dissipative Cross Coupling:
o Y V0.0,
VY, Qum
/ By &, dt
_ dielectric volume
- 1/2°
( / £ &, dr [ £ b df)
dielectric volume dielectric volume

—1<Ap<1. (33¢c)

These cross-coupling coefficients are invariant when
referred to the primary or secondary coils of the ideal
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Fig. 4. Both Fig. 2 and Fig. 3 can be represented as a series combina-
tion of parallel LCR circuits with a defined coupling coefficient between
like elements.

transformers in Fig. 3. The mutual capacitance and recip-
rocal inductance are not invariant. This fact highlights
why the former are useful when considering a normalized
impedance of the cavity for theoretical purposes.

C. Significance to the Overall T-SLOSC Equivalent Circuit

Deriving the input impedances of Fig. 2 and Fig. 3 gives
the same input impedance (Fig. 4), illustrating the duality
of the circuits. However the parameters relating to the
series circuit involve the niobium superconductor, while
the parallel circuit involves the sapphire dielectric. A
general circuit as shown in Fig. 4 is considered, where
cach parameter may have more than one contribution
arising from the sapphire and niobium parts internal to
the cavity.

The four individual mode circuit elements may be ex-
pressed in terms of the four cavity-coupling parameters,
0, Ly, w,,x,:

Iy=Lo(1— k% —«7,) (34a)

1= KkaLow,Q, (34b)

I =L, (34c)
1

¢, = m. (34d)

L, and «, depend on the probe properties and its place-
ment in the cavity. If the transformer coupling is zero,
then the probe does not couple to any modes, and the
input impedance is equal to the loop reactance. As the
transformer coupling increases, the series reactance di-
minishes and coupling to the mode increases. Probe step-
per motors that work cryogenically are used to adjust
penetration into the cavity to vary the coupling. Both the
niobium and the sapphire contribute to Q, by Q, 1=
Osaron + Qe (151, [2]. For high-Q modes w,, is domi-
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nated by the sapphire dielectric [2], [3] while the niobium
cavity perturbs it only very slightly.

For modeling purposes it is convenient to express the
input impedance of the circuit in Fig. 4 in terms of the
normalized parameters B,=r, /Z,, a=lyw,/Zy, ¥, =
(w—w,)/w,, and Q, and the cross-coupling coefficients
from either (21) or (33). Thus it can be shown that

Zin BnAn+BmAm—2VBan AnAmBnm

= +J 35
Z, 1-A A, B2, ja (33)
where
1

A, =7——77—

1+2j0,y,

is a Lorentzian of unity coupling and

1/2

Bnm= AR+j\/Qan (AC((yn +1)(ym +1))

A (D (Y1)

is a mutual cross term arising from the derived cross-
coupling coefficients. The reflection coefficient is defined
by

:BnAn + Bm.Am - 2V ﬁan AnAmBnm
+(ja—1)(1-A,A,BY,) 26
B ﬁn,An + BmAm _2 Ban AnAmBnm . (~ )

+(ja+ 1)(1 —A,A,, B,

By expressing both mode frequencies in terms of a tuning
parameter and graphing the reflection coefficient at vari-
ous tunings, the behavior of closely tuned modes can be
investigated. Mathematica allows the algebra to be han-
dled with ease.

III. OBSERVATIONS OF CoUuPLED MODES

The model describing coupled mode behavior was tested
using the apparatus shown schematically in Fig. 5. The
sapphire resonator has two unperturbed high-Q modes at
10.439 and 10.22 GHz; both occur in doublet pairs. Exper-
imental tuning curves for one of each pair of doublets are
shown in Fig. 6. The tuning variable x is measured in
millimeters from the top of the sapphire resonator to the
tuning disk. A decrease in the observed Q of each mode
occurs when a low-Q mode is tuned close to the high-Q
mode under investigation.

O degradation for the 10.439 GHz modes was observed
for x between 7 and 8 mm. The effect was seen on three
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Fig. 5. An ultrastable swept microwave frequency source is obtained

by mixing a fixed-frequency SLOSC oscillator with an HP 8662A synthe- 10.440
sizer locked to a frequency standard. The resultant signal is then swept
slowly over the T-SLOSC in reflection, at 100 s per frequency span. The
voltage V., is measured from the detector in the range where it is N 10435 J
proportional to Iplz. From this plot, Q and coupling can be measured. (3;
10.430 4
10,230
3 10425 |
£
(]
10.225 2
g
o “= 10420 4
T
S 10220 4
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10.215 -
>
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g 10210
- tuning x (mm)
9
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10.200 . . v T
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. 10 4
tuning x (mm)
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Fig. 6. Mode frequency and unloaded Q curves versus tuning for one
of each of the 10.22 GHz and 10.439 GHz high-Q doublet pairs. T
Unloaded @ curves are directly beneath the corresponding frequency S 7
curves. . % 10 1
=1
experimental runs and has never been observed for the 105
10.22 GHz mode. Since the field patterns are not known
in detail, one can only postulate why this occurs. Either
the niobium tuning stem links a significant fraction of the s
field; creating additional dissipation, or there is a reactive 10 T A 3 o 12

coupling to some distant mode. This would require larger
coupling coefficients than those presently measured (see
next section). Fig. 6. (Continued)

tuning x (mm)
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Fig. 7. The interaction of a low-Q doublet pair with the 10.439 GHz doublet pair. (a) Frequency versus tuning curves
during the interaction. (b) Unloaded Q variations of each mode during the interaction. (Continued on next page.)

Fig. 6(b) (10.439 GHz) was plotted using a room-tem-
perature circulator rather than the cryogenic circular
shown in Fig. 5. The 1.5 m of coaxial cable leading out of
the cryogenic Dewar greatly enhanced line resonances.
Section V shows that line resonances affect cavity reso-
nances through a resistive interaction between the probes.
To measure cavity properties, a line resonance can be
detuned away from cavity resonances by varying a line
stretcher between the room-temperature circulator and

the T-SLOSC. After the addition of the cryogenic circula-
tor, the interaction around x =10.2 mm was observed
with greater accuracy, shown in Fig. 7.

IV. Reactive COUPLING

For reactive coupling (ignoring damping), the method
of Goldstein [11] calculates the resonant frequencies from
det(V,,, — w’T,,)=0. Using circuit elements of Fig. 5,
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QD : Unloaded Q mode D
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Fig. 7. (b) (Continued)
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we obtain
1 1
2.1 2.1
l_’ — wc,, 7 —wC,,,
nm
det| " X =0 (37)
2.0 2.1
7 —wC,,, 7— —wC,
nm m
or
w*'(1-Al)+ 0*(2AcA 0,0, — 0] — w},)

+(1-A))wiw? =0.

It is assumed that the interacting modes have linear
tuning coefficients, so w, = w,(1 + Ax'/2) and
w,, = wy(1— Ax’' /2), where Ax' is an arbitrary dimension-
less tuning unit. The solution to first order in Ax’ and
A, — A s

VAXZ+(A, —AL)°
1+ :

(38)

Wi,27 Wg

This shows that the two modes always have a minimum
frequency separation when Ax’ = 0, owing to the reactive
coupling between the two modes.

Experimentally, it is possible to measure the net reac-
tive coupling by

W~ @y
IATI=IAL_AC'|:‘ . (39)
@q Ax'=0

Equations (21) and (33) allow couplings of either sign.
Negative inductive coupling has the same effect as posi-
tive capacitive coupling; thus it is impossible to determine
experimentally whether the coupling is through the mag-
netic or the electric field. However, the reactive coupling

can be measured and substituted into Mathematica for
simulation. The interaction is not symmetrical, so the

coupling coefficient sign can be determined by comparing
the simulation with experiment.

A general interaction of two doublet pairs requires four
mode equivalent circuits, with cross-coupling elements
between each mode circuit. For the higher frequency
interaction illustrated in Figs. 7 and 8, the dominant
coupling occurs between mode A and mode C. Mode D is
too far away in frequency, while mode B only couples very
weakly in this interaction. This is highlighted by Q,
dropping an order of magnitude less than Q, and mode
B’s tuning curve deviating only slightly, while mode A and
mode C swap characteristics. Thus the model derived for
two interacting modes should be applicable.

The linear tuning curve for modes A and C in the
vicinity of the interaction are measured and found to be
(from Fig. 7)

fa=fo[1.02811075Ax +1]

fe=fol54276 1073 Ax +1]. (40)
The frequency of intersection between the two lines in
(40) is given by f,=10.43900 GHz, and Ax is given by
Ax =x — x,, where x,=10.5107 mm. High precision in
relative values of x is achieved by a stepper motor,
although the systematic error in the absolute value is
much greater owing to the possibility of thermal differen-
tial movement during cooling.

Before the interaction the following parameters were
measured (assuming a =0): 0, =10% Q. =4-10% B, =
2, and B, =0.7. Using (41) the mutual coupling is esti-
mated from the experimental curve in Fig. 8(b) to be;
A;=—1.0-1075% This is an overestimate since X #F Xg.
After a few trials Ay, =—85-10"°% gives a reasonable
agreement with experiment. Experimental and theoretical
curves are compared in Fig. 8.
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Fig. 8. The higher frequency interaction from Fig, 7 with the experi-
mentally observed interaction compared with a theoretical simulation.
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Fig. 8. (Continued)

The lower frequency interaction in Fig. 7 is more com-
plicated, as modes B and C interact simultaneously with
mode D to about the same order of magnitude. The
mutual coupling is estimated from (39) to give A, =
—2-107°, This smaller coupling enables the high-Q modes
to get closer to the bandwidth of the low-Q mode. For the
10.22 GHz mode interactions, cross-coupling coefficients
are of the order of —5-107°.

The mechanism of this reactive coupling is either via
the electric field, as one might expect in a dielectric
resonator, or via the magnetic field through a chromium
electron spin resonance. This chromium resonance has
been observed to cause a power-dependent coupling be-
tween modes in a fixed-frequency SLOSC [16], which
causes frequency pulling of one mode when power is
injected into another. It is possible that this coupling is
another manifestation of this effect.

V. ResisTive COUPLING

Résistive couplings were observed between line reso-
nances and most cavity resonances before the cryogenic
circulator was added to the circuit in Fig. 5. The line
resonances had Q factors of about 5.5~‘1O2 with varying
couplings. After adding the cryogenic circulator, the ef-
fects of line resonances were negligible, owing to the
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Fig. 9. An HP 8350B is used to span over a line resonance so interac-
tions with a T-SLOSC resonance can be observed. The line stretcher is
used to frequency pull the line resonances.
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Fig. 10. The experimental effects and theoretical simulation of fre- ©
quency pulling a line resonance across a T-SLOSC resonant mode. Fig. 10. (Continued)



TOBAR AND BLAIR: A GENERALIZED EQUIVALENT CIRCUIT

reduction of the line length and the number of connectors
from the probe to the circulator.

The circuit in Fig. 5 cannot span the bandwidth of a
line resonance because of the wavemeter in the circuit.
Thus the circuit in Fig. 9 was used to observe a line
resonance interact with a mode of Q =10° and B~ 3.5.
An overcoupled mode is observed because from (36) it is
apparent that mutual effects will be enhanced for an
overcoupled mode. The frequency stability of the mi-
crowave sweeper allowed the study only of low-Q modes
with this circuit; however the same effects on high-Q
modes were observed using the circuit of Fig.- S with a
room-temperature circulator. The line stretcher in Fig. 9
was used to frequency pull a line resonance across the
T-SLOSC mode under investigation. Fig. 10 shows a
comparison between experiment and theory.

Line resonances couple to cavity resonances through a
niobium loop probe. From (21c), ‘

f N, N, ds
A= niobium probe
R 1,2
/ n,m,,ds Ny M d
niobium probe niobium probe

The value Ap=0.9 was found to give good agreement
between the model and experiment (Fig. 10). The cavity
resonance distorts as it tunes across the line resonance.

V1. CoNCLUSION

Interactions between various modes in a tunable sap-
phire-loaded superconducting cavity have been studied.
The main features that emerge are as follows:

1) Reactive coupling causes modes to influence each
other beyond their bandwidths, because in (38) the
reactive factor in B,,,, is multiplied by the geometric
mean of Q, and Q,,

2) Reactively coupled modes do not tune across each
other; they become hybrids of each other and even-
tually change identities, The reactive cross coupling
can be calculated by the closest point of tuning
between the two modes.

3) Resistively coupled modes influence each other only
if one can be tuned in the bandwidth of another.

4) To measure the T-SLOSC mode properties among a
line resonance, the line resonance must be tuned
away by a line stretcher, so that the line resonance
does not affect the cavity resonance through a mu-
tual resistance in the probe.

This paper has successfully modeled some of the com-
plex phenomena that occur in a tunable multimode cavity.
In spite of the complex interactions, Q factors greater
than 108 can be achieved, with a useful tuning range of
the order of tens of MHz. This technology provides a
means of creating ultra-low-phase-noise microwave
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sources, with applications in radar, space tracking, radio
astronomy, and other areas of high-precision metrology.
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